crossorigin="anonymous"> Overcoming the conversion reaction limitation at three-phase interfaces using mixed conductors towards energy-dense solid-state Li–S batteries – Nature Materials – Subrang Safar: Your Journey Through Colors, Fashion, and Lifestyle

Overcoming the conversion reaction limitation at three-phase interfaces using mixed conductors towards energy-dense solid-state Li–S batteries – Nature Materials


  • Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Tan, D. H. S. et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 373, 1494–1499 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, Y. et al. Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries. Nat. Mater. 20, 984–990 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alexander, G. V., Shi, C., O’Neill, J. & Wachsman, E. D. Extreme lithium-metal cycling enabled by a mixed ion- and electron-conducting garnet three-dimensional architecture. Nat. Mater. 22, 1136–1143 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jun, K. et al. Lithium superionic conductors with corner-sharing frameworks. Nat. Mater. 21, 924–931 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, C. et al. A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 16, 166–173 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium–sulfur batteries. Nat. Energy 8, 84–93 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Huang, Q. et al. Cycle stability of conversion-type iron fluoride lithium battery cathode at elevated temperatures in polymer electrolyte composites. Nat. Mater. 18, 1343–1349 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hua, X. et al. Revisiting metal fluorides as lithium-ion battery cathodes. Nat. Mater. 20, 841–850 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chung, W. J. et al. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 5, 518–524 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muench, S. et al. Polymer-based organic batteries. Chem. Rev. 116, 9438–9484 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, F. & Yushin, G. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ. Sci. 10, 435–459 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Janek, J. & Zeier, W. G. Challenges in speeding up solid-state battery development. Nat. Energy 8, 230–240 (2023).

    Article 

    Google Scholar
     

  • Zhang, J. et al. Microstructure engineering of solid-state composite cathode via solvent-assisted processing. Joule 5, 1845–1859 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Manthiram, A., Fu, Y., Chung, S.-H., Zu, C. & Su, Y.-S. Rechargeable lithium–sulfur batteries. Chem. Rev. 114, 11751–11787 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bradbury, R. et al. Visualizing reaction fronts and transport limitations in solid-state Li–S batteries via operando neutron imaging. Adv. Energy Mater. 13, 2203426 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ohno, S., Rosenbach, C., Dewald, G. F., Janek, J. & Zeier, W. G. Linking solid electrolyte degradation to charge carrier transport in the thiophosphate-based composite cathode toward solid-state lithium-sulfur batteries. Adv. Funct. Mater. 31, 2010620 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, J. et al. Healable and conductive sulfur iodide for solid-state Li–S batteries. Nature 627, 301–305 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, F. et al. High-performance all-solid-state lithium–sulfur battery enabled by a mixed-conductive Li2S nanocomposite. Nano Lett. 16, 4521–4527 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, X. et al. High-performance all-solid-state lithium–sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv. Energy Mater. 7, 1602923 (2017).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. High-performance all-solid-state lithium–sulfur batteries with sulfur/carbon nano-hybrids in a composite cathode. J. Mater. Chem. A 6, 23345–23356 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hou, L.-P. et al. Improved interfacial electronic contacts powering high sulfur utilization in all-solid-state lithium–sulfur batteries. Energy Storage Mater. 25, 436–442 (2020).

    Article 

    Google Scholar
     

  • Sakuda, A., Sato, Y., Hayashi, A. & Tatsumisago, M. Sulfur-based composite electrode with interconnected mesoporous carbon for all-solid-state lithium–sulfur batteries. Energy Technol. 7, 1900077 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Shi, X. et al. Fast Li-ion conductor of Li3HoBr6 for stable all-solid-state lithium–sulfur battery. Nano Lett. 21, 9325–9331 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, D. et al. Realizing high-capacity all-solid-state lithium-sulfur batteries using a low-density inorganic solid-state electrolyte. Nat. Commun. 14, 1895 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwok, C. Y., Xu, S., Kochetkov, I., Zhou, L. & Nazar, L. F. High-performance all-solid-state Li2S batteries using an interfacial redox mediator. Energy Environ. Sci. 16, 610–618 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Xu, S. et al. A high capacity all solid-state Li–sulfur battery enabled by conversion–intercalation hybrid cathode architecture. Adv. Funct. Mater. 31, 2004239 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ulissi, U. et al. High capacity all-solid-state lithium batteries enabled by pyrite–sulfur composites. Adv. Energy Mater. 8, 1801462 (2018).

    Article 

    Google Scholar
     

  • Alzahrani, A. S. et al. Confining sulfur in porous carbon by vapor deposition to achieve high-performance cathode for all-solid-state lithium–sulfur batteries. ACS Energy Lett. 6, 413–418 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kim, H., Choi, H.-N., Hwang, J.-Y., Yoon, C. S. & Sun, Y.-K. Tailoring the interface between sulfur and sulfide solid electrolyte for high-areal-capacity all-solid-state lithium–sulfur batteries. ACS Energy Lett. 8, 3971–3979 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, G., Chen, H. & Cui, Y. Formulating energy density for designing practical lithium–sulfur batteries. Nat. Energy 7, 312–319 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cao, D. et al. Understanding electrochemical reaction mechanisms of sulfur in all-solid-state batteries through operando and theoretical studies. Angew. Chem. Int. Ed. 135, e202302363 (2023).

    Article 

    Google Scholar
     

  • Xiao, Y. et al. Comparison of sulfur cathode reactions between a concentrated liquid electrolyte system and a solid-state electrolyte system by soft X-ray absorption spectroscopy. ACS Appl. Energy Mater. 4, 186–193 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Dietrich, C. et al. Lithium ion conductivity in Li2S–P2S5 glasses—building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7. J. Mater. Chem. A 5, 18111–18119 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sun, K. et al. Interaction of TiS2 and sulfur in Li–S battery system. J. Electrochem. Soc. 164, A1291–A1297 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Dewald, G. F., Ohno, S., Hering, J. G., Janek, J. & Zeier, W. G. Analysis of charge carrier transport toward optimized cathode composites for all‐solid‐state Li–S batteries. Batteries Supercaps 4, 183–194 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Han, F. et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schwietert, T. K. et al. Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nat. Mater. 19, 428–435 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Notestein, J. M. et al. Structural assessment and catalytic Consequences of the oxygen coordination environment in grafted Ti−calixarenes. J. Am. Chem. Soc. 129, 1122–1131 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cutsail, G. E. III & DeBeer, S. Challenges and opportunities for applications of advanced X-ray spectroscopy in catalysis research. ACS Catal. 12, 5864–5886 (2022).

    Article 

    Google Scholar
     

  • Wang, Y. et al. Superionic conduction and interfacial properties of the low temperature phase Li7P2S8Br0.5I0.5. Energy Storage Mater. 19, 80–87 (2019).

    Article 

    Google Scholar
     

  • Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh, V., Kosa, M., Majhi, K. & Major, D. T. Putting DFT to the test: a first-principles study of electronic, magnetic, and optical properties of Co3O4. J. Chem. Theory Comput. 11, 64–72 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Dronskowski, R. & Bloechl, P. E. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 97, 8617–8624 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Crystal orbital Hamilton population (COHP) analysis as projected from plane–wave basis sets. J. Phys. Chem. A 115, 5461–5466 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maintz, S., Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Analytic projection from plane–wave and PAW wavefunctions and application to chemical-bonding analysis in solids. J. Comput. Chem. 34, 2557–2567 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, J., Wang, X., Li, H., Chen, L. & Wu, F. High-capacity, long-life iron fluoride all-solid-state lithium battery with sulfide solid electrolyte. Adv. Energy Mater. 13, 2300706 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wan, T. H., Saccoccio, M., Chen, C. & Ciucci, F. Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochim. Acta 184, 483–499 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wang, D. et al. Overcoming the conversion reaction limitation at three-phase interfaces using mixed conductors towards energy-dense solid-state Li–S batteries. figshare https://doi.org/10.6084/m9.figshare.27257931 (2024).



  • Source link

    Leave a Reply

    Translate »