Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).
Angell, C. A., Ngai, K. L., McKenna, G. B., McMillan, P. F. & Martin, S. W. Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 88, 3113–3157 (2000).
Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99–128 (2000).
Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).
Dyre, J. C. Colloquium: the glass transition and elastic models of glass-forming liquids. Rev. Mod. Phys. 78, 953–972 (2006).
Berthier, L. & Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587–645 (2011).
Tanaka, H. Bond orientational order in liquids: towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization. Eur. Phys. J. E 35, 113 (2012).
Royall, C. P. & Williams, S. R. The role of local structure in dynamical arrest. Phys. Rep. 560, 1–75 (2015).
Hurley, M. M. & Harrowell, P. Kinetic structure of a two-dimensional liquid. Phys. Rev. E 52, 1694–1698 (1995).
Widmer-Cooper, A. & Harrowell, P. Predicting the long-time dynamic heterogeneity in a supercooled liquid on the basis of short-time heterogeneities. Phys. Rev. Lett. 96, 185701 (2006).
Shintani, H. & Tanaka, H. Frustration on the way to crystallization in glass. Nat. Phys. 2, 200–206 (2006).
Coslovich, D. & Pastore, G. Understanding fragility in supercooled Lennard-Jones mixtures. I. Locally preferred structures. J. Chem. Phys. 127, 124504 (2007).
Tanaka, H., Kawasaki, T., Shintani, H. & Watanabe, K. Critical-like behaviour of glass-forming liquids. Nat. Mater. 9, 324–331 (2010).
Xia, C. et al. The structural origin of the hard-sphere glass transition in granular packing. Nat. Commun. 6, 8409 (2015).
Tong, H. & Tanaka, H. Revealing hidden structural order controlling both fast and slow glassy dynamics in supercooled liquids. Phys. Rev. X 8, 011041 (2018).
Tong, H. & Tanaka, H. Structural order as a genuine control parameter of dynamics in simple glass formers. Nat. Commun. 10, 5596 (2019).
Tong, H. & Tanaka, H. Role of attractive interactions in structure ordering and dynamics of glass-forming liquids. Phys. Rev. Lett. 124, 225501 (2020).
Zheng, Z., Ni, R., Wang, Y. & Han, Y. Translational and rotational critical-like behaviors in the glass transition of colloidal ellipsoid monolayers. Sci. Adv. 7, eabd1958 (2021).
Singh, N., Zhang, Z., Sood, A. K., Kob, W. & Ganapathy, R. Intermediate-range order governs dynamics in dense colloidal liquids. Proc. Natl Acad. Sci. USA 120, e2300923120 (2023).
Chandler, D. & Garrahan, J. P. Dynamics on the way to forming glass: bubbles in space-time. Annu. Rev. Phys. Chem. 61, 191–217 (2010).
Kob, W., Donati, C., Plimpton, S. J., Poole, P. H. & Glotzer, S. C. Dynamical heterogeneities in a supercooled Lennard-Jones liquid. Phys. Rev. Lett. 79, 2827–2830 (1997).
Yamamoto, R. & Onuki, A. Dynamics of highly supercooled liquids: heterogeneity, rheology, and diffusion. Phys. Rev. E 58, 3515–3529 (1998).
Sherrington, D., Davison, L., Buhot, A. & Garrahan, J. P. Glassy behaviour in simple kinetically constrained models: topological networks, lattice analogues and annihilation-diffusion. J. Phys. Condens. Matter 14, 1673 (2002).
Langer, J. S. Dynamics and thermodynamics of the glass transition. Phys. Rev. E 73, 041504 (2006).
Eckmann, J.-P. & Procaccia, I. Ergodicity and slowing down in glass-forming systems with soft potentials: no finite-temperature singularities. Phys. Rev. E 78, 011503 (2008).
Bouchbinder, E. & Langer, J. S. Shear-transformation-zone theory of linear glassy dynamics. Phys. Rev. E 83, 061503 (2011).
Zhou, Y. & Milner, S. T. T1 process and dynamics in glass-forming hard-sphere liquids. Soft Matter 11, 2700–2705 (2015).
Socolar, J. E. S., Lubensky, T. C. & Steinhardt, P. J. Phonons, phasons, and dislocations in quasicrystals. Phys. Rev. B 34, 3345–3360 (1986).
Adam, G. & Gibbs, J. H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139–146 (1965).
Russo, J., Romano, F. & Tanaka, H. Glass forming ability in systems with competing orderings. Phys. Rev. X 8, 021040 (2018).
Donati, C. et al. Stringlike cooperative motion in a supercooled liquid. Phys. Rev. Lett. 80, 2338–2341 (1998).
Bouchaud, J.-P. & Biroli, G. On the Adam-Gibbs-Kirkpatrick-Thirumalai-Wolynes scenario for the viscosity increase in glasses. J. Chem. Phys. 121, 7347–7354 (2004).
Betancourt, B. A. P., Hanakata, P. Z., Starr, F. W. & Douglas, J. F. Quantitative relations between cooperative motion, emergent elasticity, and free volume in model glass-forming polymer materials. Proc. Natl Acad. Sci. USA 112, 2966–2971 (2015).
Kob, W. & Andersen, H. C. Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture. II. Intermediate scattering function and dynamic susceptibility. Phys. Rev. E 52, 4134–4153 (1995).
Böhmer, R., Ngai, K. L., Angell, C. A. & Plazek, D. J. Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 99, 4201–4209 (1993).
Onuki, A. Phase Transition Dynamics (Cambridge Univ. Press, 2002).
Lačević, N., Starr, F. W., Schrøder, T. B. & Glotzer, S. C. Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function. J. Chem. Phys. 119, 7372–7387 (2003).
Mosayebi, M., Del Gado, E., Ilg, P. & Öttinger, H. C. Probing a critical length scale at the glass transition. Phys. Rev. Lett. 104, 205704 (2010).
Gilman, J. J. Dislocation mobility in crystals. J. Appl. Phys. 36, 3195–3206 (1965).
Galwey, A. K. & Brown, M. E. A theoretical justification for the application of the Arrhenius equation to kinetics of solid state reactions (mainly ionic crystals). Proc. Royal Soc. Lond. A 450, 501–512 (1995).
Langer, J. S. Ising model of a glass transition. Phys. Rev. E 88, 012122 (2013).
Tanaka, H., Tong, H., Shi, R. & Russo, J. Revealing key structural features hidden in liquids and glasses. Nat. Rev. Phys. 1, 333–348 (2019).
Horbach, J., Kob, W. & Binder, K. Molecular dynamics simulation of the dynamics of supercooled silica. Philos. Mag. B 77, 297–303 (1998).
Horbach, J. & Kob, W. Static and dynamic properties of a viscous silica melt. Phys. Rev. B 60, 3169–3181 (1999).
Shi, R. & Tanaka, H. Impact of local symmetry breaking on the physical properties of tetrahedral liquids. Proc. Natl Acad. Sci. USA 115, 1980–1985 (2018).
Zargar, R., Nienhuis, B., Schall, P. & Bonn, D. Direct measurement of the free energy of aging hard sphere colloidal glasses. Phys. Rev. Lett. 110, 258301 (2013).
Mei, B., Zhuang, B., Lu, Y., An, L. & Wang, Z.-G. Local-average free volume correlates with dynamics in glass formers. J. Phys. Chem. Lett. 13, 3957–3964 (2022).
Scalliet, C., Guiselin, B. & Berthier, L. Thirty milliseconds in the life of a supercooled liquid. Phys. Rev. X 12, 041028 (2022).
Tanaka, H. Roles of liquid structural ordering in glass transition, crystallization, and water’s anomalies. J. NonCryst. Solids X 13, 100076 (2022).
Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).
Flenner, E. & Szamel, G. Fundamental differences between glassy dynamics in two and three dimensions. Nat. Commun. 6, 7392 (2015).
Shiba, H., Yamada, Y., Kawasaki, T. & Kim, K. Unveiling dimensionality dependence of glassy dynamics: 2D infinite fluctuation eclipses inherent structural relaxation. Phys. Rev. Lett. 117, 245701 (2016).
Illing, B. et al. Mermin–Wagner fluctuations in 2D amorphous solids. Proc. Natl Acad. Sci. USA 114, 1856–1861 (2017).
Vivek, S., Kelleher, C. P., Chaikin, P. M. & Weeks, E. R. Long-wavelength fluctuations and the glass transition in two dimensions and three dimensions. Proc. Natl Acad. Sci. USA 114, 1850–1855 (2017).