Viswanathan, V., Epstein, A. H. & Chiang, Y. The challenges and opportunities of battery-powered flight. Nature 601, 519–525 (2022).
Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).
Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).
Krauskopf, T., Richter, F. H., Zeier, W. G. & Janek, J. Physicochemical concepts of the lithium metal anode in solid-state batteries. Chem. Rev. 120, 7745–7794 (2020).
Hatzell, K. B. et al. Challenges in lithium metal anodes for solid-state batteries. ACS Energy Lett. 5, 922–934 (2020).
Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).
Kim, S. et al. Lithium-metal batteries: from fundamental research to industrialization. Adv. Mater. 35, 2206625 (2023).
Albertus, P., Babinec, S., Litzelman, S. & Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2018).
Duffner, F. et al. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 6, 123–134 (2021).
Wang, M. J., Carmona, E., Gupta, A., Albertus, P. & Sakamoto, J. Enabling “lithium-free” manufacturing of pure lithium metal solid-state batteries through in situ plating. Nat. Commun. 11, 5201 (2020).
McDowell, M. T., Quintero Cortes, F. J., Thenuwara, A. C. & Lewis, J. A. Toward high-capacity battery anode materials: chemistry and mechanics intertwined. Chem. Mater. 32, 8755–8771 (2020).
Nanda, S., Gupta, A. & Manthiram, A. Anode-free full cells: a pathway to high-energy density lithium-metal batteries. Adv. Energy Mater. 11, 2000804 (2021).
Qian, J. et al. Anode-free rechargeable lithium metal batteries. Adv. Funct. Mater. 26, 7094–7102 (2016).
Kazyak, E. et al. Understanding the electro-chemo-mechanics of Li plating in anode-free solid-state batteries with operando 3D microscopy. Matter 5, 3912–3934 (2022).
Davis, A. L., Kazyak, E., Liao, D. W., Wood, K. N. & Dasgupta, N. P. Operando analysis of interphase dynamics in anode-free solid-state batteries with sulfide electrolytes. J. Electrochem. Soc. 168, 070557 (2021).
Neudecker, B. J., Dudney, N. J. & Bates, J. B. “Lithium-free” thin-film battery with in situ plated Li anode. J. Electrochem. Soc. 147, 517–523 (2000).
Richards, W. D., Miara, L. J., Wang, Y., Kim, J. C. & Ceder, G. Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2016).
Xiao, Y. et al. Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 5, 105–126 (2020).
Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).
Kasemchainan, J. et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 18, 1105–1111 (2019).
Wang, M. J., Choudhury, R. & Sakamoto, J. Characterizing the Li-solid–electrolyte interface dynamics as a function of stack pressure and current density. Joule 3, 2165–2178 (2019).
Krauskopf, T., Hartmann, H., Zeier, W. G. & Janek, J. Toward a fundamental understanding of the lithium metal anode in solid-state batteries—an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. ACS Appl. Mater. Interfaces 11, 14463–14477 (2019).
Lewis, J. A. et al. Accelerated short circuiting in anode-free solid-state batteries driven by local lithium depletion. Adv. Energy Mater. 13, 2204186 (2023).
Haslam, C. & Sakamoto, J. Stable lithium plating in “lithium metal-free” solid-state batteries enabled by seeded lithium nucleation. J. Electrochem. Soc. 170, 040524 (2023).
Yoon, J. S. et al. Thermodynamics, adhesion, and wetting at Li/Cu(-oxide) interfaces: relevance for anode-free lithium-metal batteries. ACS Appl. Mater. Interfaces 16, 18790–18799 (2024).
Wolfenstine, J., Allen, J. L., Sakamoto, J., Siegel, D. J. & Choe, H. Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes: a brief review. Ionics 24, 1271–1276 (2018).
Krauskopf, T. et al. Lithium-metal growth kinetics on LLZO garnet-type solid electrolytes. Joule 3, 2030–2049 (2019).
Motoyama, M., Ejiri, M. & Iriyama, Y. Modeling the nucleation and growth of Li at metal current collector/LiPON interfaces. J. Electrochem. Soc. 162, A7067–A7071 (2015).
Sandoval, S. E. et al. Structural and electrochemical evolution of alloy interfacial layers in anode-free solid-state batteries. Joule 7, 2054–2073 (2023).
Lee, Y. G. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5, 299–308 (2020).
Zaman, W. & Hatzell, K. B. Processing and manufacturing of next generation lithium-based all solid-state batteries. Curr. Opin. Solid State Mater. Sci. 26, 101003 (2022).
Fuchs, T. et al. Current-dependent lithium metal growth modes in “anode-free” solid-state batteries at the Cu|LLZO interface. Adv. Energy Mater. 13, 2203174 (2023).
Pei, A., Zheng, G., Shi, F., Li, Y. & Cui, Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17, 1132–1139 (2017).
Yoon, J. S., Sulaimon, H. & Siegel, D. J. Exploiting grain boundary diffusion to minimize dendrite formation in lithium metal-solid state batteries. J. Mater. Chem. A 11, 23288–23299 (2023).
Singh, D. K. et al. Origin of the lithium metal anode instability in solid-state batteries during discharge. Matter 6, 1463–1483 (2023).
Lee, K., Kazyak, E., Wang, M. J., Neil, P. & Sakamoto, J. Analyzing void formation and rewetting of thin in situ-formed Li anodes on LLZO. Joule 6, 2547–2565 (2022).
Wang, M. J., Kazyak, E., Dasgupta, N. P. & Sakamoto, J. Transitioning solid-state batteries from lab to market: linking electro-chemo-mechanics with practical considerations. Joule 5, 1371–1390 (2021).
Lee, C. et al. Stack pressure measurements to probe the evolution of the lithium-solid-state electrolyte interface. ACS Energy Lett. 6, 3261–3269 (2021).
Zhang, X., Wang, Q. J., Harrison, K. L., Roberts, S. A. & Harris, S. J. Pressure-driven interface evolution in solid-state lithium metal batteries. Cell Rep. Phys. Sci. 1, 100012 (2020).
Chang, W. et al. Evolving contact mechanics and microstructure formation dynamics of the lithium metal-Li7La3Zr2O12 interface. Nat. Commun. 12, 6369 (2021).
Fincher, C. D., Ojeda, D., Zhang, Y., Pharr, G. M. & Pharr, M. Mechanical properties of metallic lithium: from nano to bulk scales. Acta Mater. 186, 215–222 (2020).
Xu, C., Ahmad, Z., Aryanfar, A., Viswanathan, V. & Greer, J. R. Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes. Proc. Natl Acad. Sci. USA 114, 57–61 (2017).
Cao, D. et al. Enhancing lithium stripping efficiency in anode-free solid-state batteries through self-regulated internal pressure. Nano Lett. 23, 9392–9398 (2023).
Wang, M., Wolfenstine, J. B. & Sakamoto, J. Temperature dependent flux balance of the Li/Li7La3Zr2O12 interface. Electrochim. Acta 296, 842–847 (2019).
Luo, S. et al. Thermal behavior of Li electrode in all-solid-state batteries and improved performance by temperature modulation. Int. J. Heat. Mass Transf. 199, 123450 (2022).
Kinzer, B. et al. Operando analysis of the molten Li|LLZO interface: understanding how the physical properties of Li affect the critical current density. Matter 4, 1947–1961 (2021).
Lu, M., Kanazi, N., Lin, E. & Xia, S. Size- and temperature-dependent mechanical properties of metallic lithium. Extrem. Mech. Lett. 61, 102022 (2023).
Hull, D. & Rosenberg, H. M. The deformation of lithium, sodium and potassium at low temperatures: tensile and resistivity experiments. Philos. Mag. 4, 303–315 (1959).
LePage, W. S. et al. Lithium mechanics: roles of strain rate and temperature and implications for lithium metal batteries. J. Electrochem. Soc. 166, A89–A97 (2019).
Motoyama, M., Hirota, M., Yamamoto, T. & Iriyama, Y. Temperature effects on Li nucleation at Cu/LiPON interfaces. ACS Appl. Mater. Interfaces 12, 38045–38053 (2020).
Cheng, D. et al. A free-standing lithium phosphorus oxynitride thin film electrolyte promotes uniformly dense lithium metal deposition with no external pressure. Nat. Nanotechnol. 18, 1448–1455 (2023).
Ning, Z. et al. Dendrite initiation and propagation in lithium metal solid-state batteries. Nature 618, 287–293 (2023).
Seymour, I. D., Quérel, E., Brugge, R. H. & Pesci, F. M. Understanding and engineering interfacial adhesion in solid-state batteries with metallic anodes. ChemSusChem 16, e202202215 (2023).
Zhu, Y., He, X. & Mo, Y. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A 4, 3253–3266 (2016).
Wenzel, S., Sedlmaier, S. J., Dietrich, C., Zeier, W. G. & Janek, J. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ion. 318, 102–112 (2018).
Hao, H. et al. Tuned reactivity at the lithium metal solid state electrolyte interphase. Adv. Energy Mater. 13, 2301338 (2023).
Wang, Y. et al. Mechanical milling-induced microstructure changes in argyrodite LPSCl solid-state electrolyte critically affect electrochemical stability. Adv. Energy Mater. 14, 2304530 (2024).
Lin, L. et al. Nonintuitive role of solid electrolyte porosity on failure. ACS Energy Lett. 9, 2387–2393 (2024).
Vishnugopi, B. S. et al. Mesoscale interrogation reveals mechanistic origins of lithium filaments along grain boundaries in inorganic solid electrolytes. Adv. Energy Mater. 12, 2102825 (2022).
Yu, S. & Siegel, D. J. Grain boundary softening: a potential mechanism for lithium metal penetration through stiff solid electrolytes. ACS Appl. Mater. Interfaces 10, 38151–38158 (2018).
Lee, K. & Sakamoto, J. Li stripping behavior of anode-free solid-state batteries under intermittent-current discharge conditions. Adv. Energy Mater. 14, 2303571 (2024).
Alexander, G. V., Shi, C., O’Neill, J. & Wachsman, E. D. Extreme lithium-metal cycling enabled by a mixed ion- and electron-conducting garnet three-dimensional architecture. Nat. Mater. 22, 1136–1143 (2023).
Liu, J. et al. Pathways for practical high-energy long cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).
Xiao, J. et al. Understanding and applying Coulombic efficiency in lithium metal batteries. Nat. Energy 5, 561–568 (2020).
Hobold, G. M. et al. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nat. Energy 6, 951–960 (2021).
Sanchez, A. J. & Dasgupta, N. P. Lithium metal anodes: advancing our mechanistic understanding of cycling phenomena in liquid and solid electrolytes. J. Am. Chem. Soc. 146, 4282–4300 (2024).
Jagger, B. & Pasta, M. Solid electrolyte interphases in lithium metal batteries. Joule 7, 2228–2244 (2023).
Zhu, Y., He, X. & Mo, Y. Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015).
Lewis, J. A. et al. Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography. Nat. Mater. 20, 503–510 (2021).
Vishnugopi, B. S. et al. Asymmetric contact loss dynamics during plating and stripping in solid-state batteries. Adv. Energy Mater. 13, 2203671 (2022).
Eckhardt, J. K., Klar, P. J., Janek, J. & Heiliger, C. Interplay of dynamic constriction and interface morphology between reversible metal anode and solid electrolyte in solid state batteries. ACS Appl. Mater. Interfaces 14, 35545–35554 (2022).
Vishnugopi, B. S. et al. Challenges and opportunities for fast charging of solid-state lithium metal batteries. ACS Energy Lett. 6, 3734–3749 (2021).
Heubner, C. et al. From lithium-metal toward anode-free solid-state batteries: current developments, issues, and challenges. Adv. Funct. Mater. 31, 2106608 (2021).
Haslam, C. G., Wolfenstine, J. B. & Sakamoto, J. The effect of aspect ratio on the mechanical behavior of Li metal in solid-state cells. J. Power Sources 520, 230831 (2022).
Shin, D. et al. Preferential lithium plating in the interfacial void tegion in all-solid-state batteries via pressure gradient-driven lithium-ion flux. ACS Energy Lett. 9, 1035–1042 (2024).
Swamy, T. et al. Lithium metal penetration induced by electrodeposition through solid electrolytes: example in single-crystal Li6La3ZrTaO12 garnet. J. Electrochem. Soc. 165, A3648–A3655 (2018).
Ning, Z. et al. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells. Nat. Mater. 20, 1121–1129 (2021).
Hänsel, C. & Kundu, D. The stack pressure dilemma in sulfide electrolyte based Li metal solid-state batteries: a case study with Li6PS5Cl solid electrolyte. Adv. Mater. Interfaces 8, 2100206 (2021).
Doux, J. M. et al. Stack pressure considerations for room-temperature all-solid-state lithium metal batteries. Adv. Energy Mater. 10, 1903253 (2020).
Fincher, C. D. et al. Controlling dendrite propagation in solid-state batteries with engineered stress. Joule 6, 2794–2809 (2022).
Fuchs, T. et al. Increasing the pressure-free stripping capacity of the lithium metal anode in solid-state-batteries by carbon nanotubes. Adv. Energy Mater. 12, 2201125 (2022).
Kim, J. S. et al. Surface engineering of inorganic solid-state electrolytes via interlayers strategy for developing long-cycling quasi-all-solid-state lithium batteries. Nat. Commun. 14, 782 (2023).
Wang, D. et al. Between promise and practice: a comparative look at the energy density of Li metal-free batteries and Li metal batteries. ACS Energy Lett. 8, 5248–5252 (2023).
Lee, K. & Sakamoto, J. Effect of depth of discharge (DOD) on cycling in situ formed Li anodes. Faraday Discuss. 248, 250–265 (2023).
Müller, A. et al. Influence of Au, Pt, and C seed layers on lithium nucleation dynamics for anode-free solid-state batteries. ACS Appl. Mater. Interfaces 16, 695–703 (2024).
Park, S. H. et al. Clarification of Li deposition behavior on anodes with a porous interlayer in Li-free all-solid-state batteries. J. Mater. Chem. A 10, 21995–22006 (2022).
Martin, C., Genovese, M., Louli, A. J., Weber, R. & Dahn, J. R. Cycling lithium metal on graphite to form hybrid lithium-ion/lithium metal cells. Joule 4, 1296–1310 (2020).
Liao, D. W. et al. Interfacial dynamics of carbon interlayers in anode-free solid-state batteries. J. Mater. Chem. A 12, 5990–6003 (2024).
Wu, C. et al. Understanding the chemomechanical function of the silver–carbon interlayer in sheet-type all-solid-state lithium-metal batteries. Nano Lett. 23, 1132–1139 (2023).
Suzuki, N. et al. Highly cyclable all-solid-state battery with deposition-type lithium metal anode based on thin carbon black layer. Adv. Energy Sustain. Res. 2, 2100066 (2021).
Kim, S. et al. High-power hybrid solid-state lithium-metal batteries enabled by preferred directional lithium growth mechanism. ACS Energy Lett. 8, 9–20 (2023).
Xie, F., Diallo, M. S., Kim, H., Tu, Q. H. & Ceder, G. The microscopic mechanism of lithiation and delithiation in the Ag/C buffer layer for anode-free solid-state batteries. Adv. Energy Mater. 14, 2302960 (2024).
Sandoval, S. E. et al. Understanding the effects of alloy films on the electrochemical behavior of lithium metal anodes with operando optical microscopy. J. Electrochem. Soc. 168, 100517 (2021).
Yan, K. et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016).
Wang, Y. et al. Stable anode-free all-solid-state lithium battery through tuned metal wetting on the copper current collector. Adv. Mater. 35, 2206762 (2023).
Wang, J. et al. Regulating Li transport in Li–magnesium alloy for dendrite free Li metal anode. Nano Res. 16, 8338–8344 (2023).
Thenuwara, A. C. et al. Interplay among metallic interlayers, discharge rate, and pressure in LLZO-based lithium-metal batteries. ACS Energy Lett. 8, 4016–4023 (2023).
Ruano, O. A., Miller, A. K. & Sherby, O. D. The influence of pipe diffusion on the creep of fine-grained materials. Mater. Sci. Eng. 51, 9–16 (1981).