crossorigin="anonymous"> Electro-chemo-mechanics of anode-free solid-state batteries – Nature Materials – Subrang Safar: Your Journey Through Colors, Fashion, and Lifestyle

Electro-chemo-mechanics of anode-free solid-state batteries – Nature Materials


  • Viswanathan, V., Epstein, A. H. & Chiang, Y. The challenges and opportunities of battery-powered flight. Nature 601, 519–525 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Krauskopf, T., Richter, F. H., Zeier, W. G. & Janek, J. Physicochemical concepts of the lithium metal anode in solid-state batteries. Chem. Rev. 120, 7745–7794 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hatzell, K. B. et al. Challenges in lithium metal anodes for solid-state batteries. ACS Energy Lett. 5, 922–934 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).

    Article 

    Google Scholar
     

  • Kim, S. et al. Lithium-metal batteries: from fundamental research to industrialization. Adv. Mater. 35, 2206625 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Albertus, P., Babinec, S., Litzelman, S. & Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Duffner, F. et al. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 6, 123–134 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, M. J., Carmona, E., Gupta, A., Albertus, P. & Sakamoto, J. Enabling “lithium-free” manufacturing of pure lithium metal solid-state batteries through in situ plating. Nat. Commun. 11, 5201 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDowell, M. T., Quintero Cortes, F. J., Thenuwara, A. C. & Lewis, J. A. Toward high-capacity battery anode materials: chemistry and mechanics intertwined. Chem. Mater. 32, 8755–8771 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Nanda, S., Gupta, A. & Manthiram, A. Anode-free full cells: a pathway to high-energy density lithium-metal batteries. Adv. Energy Mater. 11, 2000804 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Qian, J. et al. Anode-free rechargeable lithium metal batteries. Adv. Funct. Mater. 26, 7094–7102 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kazyak, E. et al. Understanding the electro-chemo-mechanics of Li plating in anode-free solid-state batteries with operando 3D microscopy. Matter 5, 3912–3934 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Davis, A. L., Kazyak, E., Liao, D. W., Wood, K. N. & Dasgupta, N. P. Operando analysis of interphase dynamics in anode-free solid-state batteries with sulfide electrolytes. J. Electrochem. Soc. 168, 070557 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Neudecker, B. J., Dudney, N. J. & Bates, J. B. “Lithium-free” thin-film battery with in situ plated Li anode. J. Electrochem. Soc. 147, 517–523 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Richards, W. D., Miara, L. J., Wang, Y., Kim, J. C. & Ceder, G. Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, Y. et al. Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 5, 105–126 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kasemchainan, J. et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 18, 1105–1111 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, M. J., Choudhury, R. & Sakamoto, J. Characterizing the Li-solid–electrolyte interface dynamics as a function of stack pressure and current density. Joule 3, 2165–2178 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Krauskopf, T., Hartmann, H., Zeier, W. G. & Janek, J. Toward a fundamental understanding of the lithium metal anode in solid-state batteries—an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. ACS Appl. Mater. Interfaces 11, 14463–14477 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewis, J. A. et al. Accelerated short circuiting in anode-free solid-state batteries driven by local lithium depletion. Adv. Energy Mater. 13, 2204186 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Haslam, C. & Sakamoto, J. Stable lithium plating in “lithium metal-free” solid-state batteries enabled by seeded lithium nucleation. J. Electrochem. Soc. 170, 040524 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yoon, J. S. et al. Thermodynamics, adhesion, and wetting at Li/Cu(-oxide) interfaces: relevance for anode-free lithium-metal batteries. ACS Appl. Mater. Interfaces 16, 18790–18799 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolfenstine, J., Allen, J. L., Sakamoto, J., Siegel, D. J. & Choe, H. Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes: a brief review. Ionics 24, 1271–1276 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Krauskopf, T. et al. Lithium-metal growth kinetics on LLZO garnet-type solid electrolytes. Joule 3, 2030–2049 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Motoyama, M., Ejiri, M. & Iriyama, Y. Modeling the nucleation and growth of Li at metal current collector/LiPON interfaces. J. Electrochem. Soc. 162, A7067–A7071 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Sandoval, S. E. et al. Structural and electrochemical evolution of alloy interfacial layers in anode-free solid-state batteries. Joule 7, 2054–2073 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lee, Y. G. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5, 299–308 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zaman, W. & Hatzell, K. B. Processing and manufacturing of next generation lithium-based all solid-state batteries. Curr. Opin. Solid State Mater. Sci. 26, 101003 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fuchs, T. et al. Current-dependent lithium metal growth modes in “anode-free” solid-state batteries at the Cu|LLZO interface. Adv. Energy Mater. 13, 2203174 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Pei, A., Zheng, G., Shi, F., Li, Y. & Cui, Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17, 1132–1139 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoon, J. S., Sulaimon, H. & Siegel, D. J. Exploiting grain boundary diffusion to minimize dendrite formation in lithium metal-solid state batteries. J. Mater. Chem. A 11, 23288–23299 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Singh, D. K. et al. Origin of the lithium metal anode instability in solid-state batteries during discharge. Matter 6, 1463–1483 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lee, K., Kazyak, E., Wang, M. J., Neil, P. & Sakamoto, J. Analyzing void formation and rewetting of thin in situ-formed Li anodes on LLZO. Joule 6, 2547–2565 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, M. J., Kazyak, E., Dasgupta, N. P. & Sakamoto, J. Transitioning solid-state batteries from lab to market: linking electro-chemo-mechanics with practical considerations. Joule 5, 1371–1390 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lee, C. et al. Stack pressure measurements to probe the evolution of the lithium-solid-state electrolyte interface. ACS Energy Lett. 6, 3261–3269 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X., Wang, Q. J., Harrison, K. L., Roberts, S. A. & Harris, S. J. Pressure-driven interface evolution in solid-state lithium metal batteries. Cell Rep. Phys. Sci. 1, 100012 (2020).

    Article 

    Google Scholar
     

  • Chang, W. et al. Evolving contact mechanics and microstructure formation dynamics of the lithium metal-Li7La3Zr2O12 interface. Nat. Commun. 12, 6369 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fincher, C. D., Ojeda, D., Zhang, Y., Pharr, G. M. & Pharr, M. Mechanical properties of metallic lithium: from nano to bulk scales. Acta Mater. 186, 215–222 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Xu, C., Ahmad, Z., Aryanfar, A., Viswanathan, V. & Greer, J. R. Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes. Proc. Natl Acad. Sci. USA 114, 57–61 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, D. et al. Enhancing lithium stripping efficiency in anode-free solid-state batteries through self-regulated internal pressure. Nano Lett. 23, 9392–9398 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, M., Wolfenstine, J. B. & Sakamoto, J. Temperature dependent flux balance of the Li/Li7La3Zr2O12 interface. Electrochim. Acta 296, 842–847 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Luo, S. et al. Thermal behavior of Li electrode in all-solid-state batteries and improved performance by temperature modulation. Int. J. Heat. Mass Transf. 199, 123450 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kinzer, B. et al. Operando analysis of the molten Li|LLZO interface: understanding how the physical properties of Li affect the critical current density. Matter 4, 1947–1961 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lu, M., Kanazi, N., Lin, E. & Xia, S. Size- and temperature-dependent mechanical properties of metallic lithium. Extrem. Mech. Lett. 61, 102022 (2023).

    Article 

    Google Scholar
     

  • Hull, D. & Rosenberg, H. M. The deformation of lithium, sodium and potassium at low temperatures: tensile and resistivity experiments. Philos. Mag. 4, 303–315 (1959).

    Article 
    CAS 

    Google Scholar
     

  • LePage, W. S. et al. Lithium mechanics: roles of strain rate and temperature and implications for lithium metal batteries. J. Electrochem. Soc. 166, A89–A97 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Motoyama, M., Hirota, M., Yamamoto, T. & Iriyama, Y. Temperature effects on Li nucleation at Cu/LiPON interfaces. ACS Appl. Mater. Interfaces 12, 38045–38053 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, D. et al. A free-standing lithium phosphorus oxynitride thin film electrolyte promotes uniformly dense lithium metal deposition with no external pressure. Nat. Nanotechnol. 18, 1448–1455 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ning, Z. et al. Dendrite initiation and propagation in lithium metal solid-state batteries. Nature 618, 287–293 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seymour, I. D., Quérel, E., Brugge, R. H. & Pesci, F. M. Understanding and engineering interfacial adhesion in solid-state batteries with metallic anodes. ChemSusChem 16, e202202215 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, Y., He, X. & Mo, Y. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A 4, 3253–3266 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wenzel, S., Sedlmaier, S. J., Dietrich, C., Zeier, W. G. & Janek, J. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ion. 318, 102–112 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hao, H. et al. Tuned reactivity at the lithium metal solid state electrolyte interphase. Adv. Energy Mater. 13, 2301338 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Mechanical milling-induced microstructure changes in argyrodite LPSCl solid-state electrolyte critically affect electrochemical stability. Adv. Energy Mater. 14, 2304530 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Lin, L. et al. Nonintuitive role of solid electrolyte porosity on failure. ACS Energy Lett. 9, 2387–2393 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Vishnugopi, B. S. et al. Mesoscale interrogation reveals mechanistic origins of lithium filaments along grain boundaries in inorganic solid electrolytes. Adv. Energy Mater. 12, 2102825 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yu, S. & Siegel, D. J. Grain boundary softening: a potential mechanism for lithium metal penetration through stiff solid electrolytes. ACS Appl. Mater. Interfaces 10, 38151–38158 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, K. & Sakamoto, J. Li stripping behavior of anode-free solid-state batteries under intermittent-current discharge conditions. Adv. Energy Mater. 14, 2303571 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Alexander, G. V., Shi, C., O’Neill, J. & Wachsman, E. D. Extreme lithium-metal cycling enabled by a mixed ion- and electron-conducting garnet three-dimensional architecture. Nat. Mater. 22, 1136–1143 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, J. et al. Pathways for practical high-energy long cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, J. et al. Understanding and applying Coulombic efficiency in lithium metal batteries. Nat. Energy 5, 561–568 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hobold, G. M. et al. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nat. Energy 6, 951–960 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sanchez, A. J. & Dasgupta, N. P. Lithium metal anodes: advancing our mechanistic understanding of cycling phenomena in liquid and solid electrolytes. J. Am. Chem. Soc. 146, 4282–4300 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jagger, B. & Pasta, M. Solid electrolyte interphases in lithium metal batteries. Joule 7, 2228–2244 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, Y., He, X. & Mo, Y. Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewis, J. A. et al. Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography. Nat. Mater. 20, 503–510 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vishnugopi, B. S. et al. Asymmetric contact loss dynamics during plating and stripping in solid-state batteries. Adv. Energy Mater. 13, 2203671 (2022).

    Article 

    Google Scholar
     

  • Eckhardt, J. K., Klar, P. J., Janek, J. & Heiliger, C. Interplay of dynamic constriction and interface morphology between reversible metal anode and solid electrolyte in solid state batteries. ACS Appl. Mater. Interfaces 14, 35545–35554 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vishnugopi, B. S. et al. Challenges and opportunities for fast charging of solid-state lithium metal batteries. ACS Energy Lett. 6, 3734–3749 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Heubner, C. et al. From lithium-metal toward anode-free solid-state batteries: current developments, issues, and challenges. Adv. Funct. Mater. 31, 2106608 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Haslam, C. G., Wolfenstine, J. B. & Sakamoto, J. The effect of aspect ratio on the mechanical behavior of Li metal in solid-state cells. J. Power Sources 520, 230831 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shin, D. et al. Preferential lithium plating in the interfacial void tegion in all-solid-state batteries via pressure gradient-driven lithium-ion flux. ACS Energy Lett. 9, 1035–1042 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Swamy, T. et al. Lithium metal penetration induced by electrodeposition through solid electrolytes: example in single-crystal Li6La3ZrTaO12 garnet. J. Electrochem. Soc. 165, A3648–A3655 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ning, Z. et al. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells. Nat. Mater. 20, 1121–1129 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hänsel, C. & Kundu, D. The stack pressure dilemma in sulfide electrolyte based Li metal solid-state batteries: a case study with Li6PS5Cl solid electrolyte. Adv. Mater. Interfaces 8, 2100206 (2021).

    Article 

    Google Scholar
     

  • Doux, J. M. et al. Stack pressure considerations for room-temperature all-solid-state lithium metal batteries. Adv. Energy Mater. 10, 1903253 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Fincher, C. D. et al. Controlling dendrite propagation in solid-state batteries with engineered stress. Joule 6, 2794–2809 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fuchs, T. et al. Increasing the pressure-free stripping capacity of the lithium metal anode in solid-state-batteries by carbon nanotubes. Adv. Energy Mater. 12, 2201125 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J. S. et al. Surface engineering of inorganic solid-state electrolytes via interlayers strategy for developing long-cycling quasi-all-solid-state lithium batteries. Nat. Commun. 14, 782 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, D. et al. Between promise and practice: a comparative look at the energy density of Li metal-free batteries and Li metal batteries. ACS Energy Lett. 8, 5248–5252 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lee, K. & Sakamoto, J. Effect of depth of discharge (DOD) on cycling in situ formed Li anodes. Faraday Discuss. 248, 250–265 (2023).

    Article 

    Google Scholar
     

  • Müller, A. et al. Influence of Au, Pt, and C seed layers on lithium nucleation dynamics for anode-free solid-state batteries. ACS Appl. Mater. Interfaces 16, 695–703 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Park, S. H. et al. Clarification of Li deposition behavior on anodes with a porous interlayer in Li-free all-solid-state batteries. J. Mater. Chem. A 10, 21995–22006 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Martin, C., Genovese, M., Louli, A. J., Weber, R. & Dahn, J. R. Cycling lithium metal on graphite to form hybrid lithium-ion/lithium metal cells. Joule 4, 1296–1310 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liao, D. W. et al. Interfacial dynamics of carbon interlayers in anode-free solid-state batteries. J. Mater. Chem. A 12, 5990–6003 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Wu, C. et al. Understanding the chemomechanical function of the silver–carbon interlayer in sheet-type all-solid-state lithium-metal batteries. Nano Lett. 23, 1132–1139 (2023).

    Article 

    Google Scholar
     

  • Suzuki, N. et al. Highly cyclable all-solid-state battery with deposition-type lithium metal anode based on thin carbon black layer. Adv. Energy Sustain. Res. 2, 2100066 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kim, S. et al. High-power hybrid solid-state lithium-metal batteries enabled by preferred directional lithium growth mechanism. ACS Energy Lett. 8, 9–20 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Xie, F., Diallo, M. S., Kim, H., Tu, Q. H. & Ceder, G. The microscopic mechanism of lithiation and delithiation in the Ag/C buffer layer for anode-free solid-state batteries. Adv. Energy Mater. 14, 2302960 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Sandoval, S. E. et al. Understanding the effects of alloy films on the electrochemical behavior of lithium metal anodes with operando optical microscopy. J. Electrochem. Soc. 168, 100517 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yan, K. et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Stable anode-free all-solid-state lithium battery through tuned metal wetting on the copper current collector. Adv. Mater. 35, 2206762 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J. et al. Regulating Li transport in Li–magnesium alloy for dendrite free Li metal anode. Nano Res. 16, 8338–8344 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Thenuwara, A. C. et al. Interplay among metallic interlayers, discharge rate, and pressure in LLZO-based lithium-metal batteries. ACS Energy Lett. 8, 4016–4023 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ruano, O. A., Miller, A. K. & Sherby, O. D. The influence of pipe diffusion on the creep of fine-grained materials. Mater. Sci. Eng. 51, 9–16 (1981).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Translate »