crossorigin="anonymous"> Microscopic structural origin of slow dynamics in glass-forming liquids – Nature Materials – Subrang Safar: Your Journey Through Colors, Fashion, and Lifestyle

Microscopic structural origin of slow dynamics in glass-forming liquids – Nature Materials


  • Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Angell, C. A., Ngai, K. L., McKenna, G. B., McMillan, P. F. & Martin, S. W. Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 88, 3113–3157 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99–128 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dyre, J. C. Colloquium: the glass transition and elastic models of glass-forming liquids. Rev. Mod. Phys. 78, 953–972 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Berthier, L. & Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587–645 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Tanaka, H. Bond orientational order in liquids: towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization. Eur. Phys. J. E 35, 113 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Royall, C. P. & Williams, S. R. The role of local structure in dynamical arrest. Phys. Rep. 560, 1–75 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Hurley, M. M. & Harrowell, P. Kinetic structure of a two-dimensional liquid. Phys. Rev. E 52, 1694–1698 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Widmer-Cooper, A. & Harrowell, P. Predicting the long-time dynamic heterogeneity in a supercooled liquid on the basis of short-time heterogeneities. Phys. Rev. Lett. 96, 185701 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Shintani, H. & Tanaka, H. Frustration on the way to crystallization in glass. Nat. Phys. 2, 200–206 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Coslovich, D. & Pastore, G. Understanding fragility in supercooled Lennard-Jones mixtures. I. Locally preferred structures. J. Chem. Phys. 127, 124504 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanaka, H., Kawasaki, T., Shintani, H. & Watanabe, K. Critical-like behaviour of glass-forming liquids. Nat. Mater. 9, 324–331 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia, C. et al. The structural origin of the hard-sphere glass transition in granular packing. Nat. Commun. 6, 8409 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tong, H. & Tanaka, H. Revealing hidden structural order controlling both fast and slow glassy dynamics in supercooled liquids. Phys. Rev. X 8, 011041 (2018).

    CAS 

    Google Scholar
     

  • Tong, H. & Tanaka, H. Structural order as a genuine control parameter of dynamics in simple glass formers. Nat. Commun. 10, 5596 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tong, H. & Tanaka, H. Role of attractive interactions in structure ordering and dynamics of glass-forming liquids. Phys. Rev. Lett. 124, 225501 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, Z., Ni, R., Wang, Y. & Han, Y. Translational and rotational critical-like behaviors in the glass transition of colloidal ellipsoid monolayers. Sci. Adv. 7, eabd1958 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, N., Zhang, Z., Sood, A. K., Kob, W. & Ganapathy, R. Intermediate-range order governs dynamics in dense colloidal liquids. Proc. Natl Acad. Sci. USA 120, e2300923120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chandler, D. & Garrahan, J. P. Dynamics on the way to forming glass: bubbles in space-time. Annu. Rev. Phys. Chem. 61, 191–217 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kob, W., Donati, C., Plimpton, S. J., Poole, P. H. & Glotzer, S. C. Dynamical heterogeneities in a supercooled Lennard-Jones liquid. Phys. Rev. Lett. 79, 2827–2830 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Yamamoto, R. & Onuki, A. Dynamics of highly supercooled liquids: heterogeneity, rheology, and diffusion. Phys. Rev. E 58, 3515–3529 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Sherrington, D., Davison, L., Buhot, A. & Garrahan, J. P. Glassy behaviour in simple kinetically constrained models: topological networks, lattice analogues and annihilation-diffusion. J. Phys. Condens. Matter 14, 1673 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Langer, J. S. Dynamics and thermodynamics of the glass transition. Phys. Rev. E 73, 041504 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Eckmann, J.-P. & Procaccia, I. Ergodicity and slowing down in glass-forming systems with soft potentials: no finite-temperature singularities. Phys. Rev. E 78, 011503 (2008).

    Article 

    Google Scholar
     

  • Bouchbinder, E. & Langer, J. S. Shear-transformation-zone theory of linear glassy dynamics. Phys. Rev. E 83, 061503 (2011).

    Article 

    Google Scholar
     

  • Zhou, Y. & Milner, S. T. T1 process and dynamics in glass-forming hard-sphere liquids. Soft Matter 11, 2700–2705 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Socolar, J. E. S., Lubensky, T. C. & Steinhardt, P. J. Phonons, phasons, and dislocations in quasicrystals. Phys. Rev. B 34, 3345–3360 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Adam, G. & Gibbs, J. H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139–146 (1965).

    Article 
    CAS 

    Google Scholar
     

  • Russo, J., Romano, F. & Tanaka, H. Glass forming ability in systems with competing orderings. Phys. Rev. X 8, 021040 (2018).

    CAS 

    Google Scholar
     

  • Donati, C. et al. Stringlike cooperative motion in a supercooled liquid. Phys. Rev. Lett. 80, 2338–2341 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Bouchaud, J.-P. & Biroli, G. On the Adam-Gibbs-Kirkpatrick-Thirumalai-Wolynes scenario for the viscosity increase in glasses. J. Chem. Phys. 121, 7347–7354 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Betancourt, B. A. P., Hanakata, P. Z., Starr, F. W. & Douglas, J. F. Quantitative relations between cooperative motion, emergent elasticity, and free volume in model glass-forming polymer materials. Proc. Natl Acad. Sci. USA 112, 2966–2971 (2015).

    Article 

    Google Scholar
     

  • Kob, W. & Andersen, H. C. Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture. II. Intermediate scattering function and dynamic susceptibility. Phys. Rev. E 52, 4134–4153 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Böhmer, R., Ngai, K. L., Angell, C. A. & Plazek, D. J. Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 99, 4201–4209 (1993).

    Article 

    Google Scholar
     

  • Onuki, A. Phase Transition Dynamics (Cambridge Univ. Press, 2002).

  • Lačević, N., Starr, F. W., Schrøder, T. B. & Glotzer, S. C. Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function. J. Chem. Phys. 119, 7372–7387 (2003).

    Article 

    Google Scholar
     

  • Mosayebi, M., Del Gado, E., Ilg, P. & Öttinger, H. C. Probing a critical length scale at the glass transition. Phys. Rev. Lett. 104, 205704 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Gilman, J. J. Dislocation mobility in crystals. J. Appl. Phys. 36, 3195–3206 (1965).

    Article 
    CAS 

    Google Scholar
     

  • Galwey, A. K. & Brown, M. E. A theoretical justification for the application of the Arrhenius equation to kinetics of solid state reactions (mainly ionic crystals). Proc. Royal Soc. Lond. A 450, 501–512 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Langer, J. S. Ising model of a glass transition. Phys. Rev. E 88, 012122 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Tanaka, H., Tong, H., Shi, R. & Russo, J. Revealing key structural features hidden in liquids and glasses. Nat. Rev. Phys. 1, 333–348 (2019).

    Article 

    Google Scholar
     

  • Horbach, J., Kob, W. & Binder, K. Molecular dynamics simulation of the dynamics of supercooled silica. Philos. Mag. B 77, 297–303 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Horbach, J. & Kob, W. Static and dynamic properties of a viscous silica melt. Phys. Rev. B 60, 3169–3181 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Shi, R. & Tanaka, H. Impact of local symmetry breaking on the physical properties of tetrahedral liquids. Proc. Natl Acad. Sci. USA 115, 1980–1985 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zargar, R., Nienhuis, B., Schall, P. & Bonn, D. Direct measurement of the free energy of aging hard sphere colloidal glasses. Phys. Rev. Lett. 110, 258301 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Mei, B., Zhuang, B., Lu, Y., An, L. & Wang, Z.-G. Local-average free volume correlates with dynamics in glass formers. J. Phys. Chem. Lett. 13, 3957–3964 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scalliet, C., Guiselin, B. & Berthier, L. Thirty milliseconds in the life of a supercooled liquid. Phys. Rev. X 12, 041028 (2022).

    CAS 

    Google Scholar
     

  • Tanaka, H. Roles of liquid structural ordering in glass transition, crystallization, and water’s anomalies. J. NonCryst. Solids X 13, 100076 (2022).

    CAS 

    Google Scholar
     

  • Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Flenner, E. & Szamel, G. Fundamental differences between glassy dynamics in two and three dimensions. Nat. Commun. 6, 7392 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shiba, H., Yamada, Y., Kawasaki, T. & Kim, K. Unveiling dimensionality dependence of glassy dynamics: 2D infinite fluctuation eclipses inherent structural relaxation. Phys. Rev. Lett. 117, 245701 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Illing, B. et al. Mermin–Wagner fluctuations in 2D amorphous solids. Proc. Natl Acad. Sci. USA 114, 1856–1861 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vivek, S., Kelleher, C. P., Chaikin, P. M. & Weeks, E. R. Long-wavelength fluctuations and the glass transition in two dimensions and three dimensions. Proc. Natl Acad. Sci. USA 114, 1850–1855 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Leave a Reply

    Translate »