crossorigin="anonymous"> All-perovskite tandem solar cells achieving >29% efficiency with improved (100) orientation in wide-bandgap perovskites – Nature Materials – Subrang Safar: Your Journey Through Colors, Fashion, and Lifestyle

All-perovskite tandem solar cells achieving >29% efficiency with improved (100) orientation in wide-bandgap perovskites – Nature Materials


  • Lin, R. et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73–78 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, H. et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613, 676–681 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, R. et al. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature 620, 994–1000 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hörantner, M. T. et al. The potential of multijunction perovskite solar cells. ACS Energy Lett. 2, 2506–2513 (2017).

    Article 

    Google Scholar
     

  • Leijtens, T., Bush, K. A., Prasanna, R. & McGehee, M. D. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3, 828–838 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lin, R. et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nat. Energy 4, 864–873 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, K. et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 5, 870–880 (2020).

    Article 

    Google Scholar
     

  • Jiang, Q. et al. Compositional texture engineering for highly stable wide-bandgap perovskite solar cells. Science 378, 1295–1300 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tong, J. et al. Carrier control in Sn–Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability. Nat. Energy 7, 642–651 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Prasanna, R. et al. Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability. Nat. Energy 4, 939–947 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Cao, J. et al. High-performance tin–lead mixed-perovskite solar cells with vertical compositional gradient. Adv. Mater. 34, 2107729 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, J. et al. Mixed tin-lead perovskites with balanced crystallization and oxidation barrier for all-perovskite tandem solar cells. Nat. Commun. 15, 2324 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Penã-Camargo, F. et al. Halide segregation versus interfacial recombination in bromide-rich wide-gap perovskite solar cells. ACS Energy Lett. 5, 2728–2736 (2020).

    Article 

    Google Scholar
     

  • Brinkmann, K. O. et al. Perovskite–organic tandem solar cells with indium oxide interconnect. Nature 604, 280–286 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, R. et al. Improving interface quality for 1-cm2 all-perovskite tandem solar cells. Nature 618, 80–86 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, C. et al. Arylammonium-assisted reduction of the open-circuit voltage deficit in wide-bandgap perovskite solar cells: the role of suppressed ion migration. ACS Energy Lett. 5, 2560–2568 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kim, D. et al. Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science 368, 155–160 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caprioglio, P. et al. Open-circuit and short-circuit loss management in wide-gap perovskite p-i-n solar cells. Nat. Commun. 14, 932 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McMeekin, D. P. et al. Intermediate-phase engineering via dimethylammonium cation additive for stable perovskite solar cells. Nat. Mater. 22, 73–83 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Susic, I., Gil-Escrig, L., Palazon, F., Sessolo, M. & Bolink, H. J. Quadruple-cation wide-bandgap perovskite solar cells with enhanced thermal stability enabled by vacuum deposition. ACS Energy Lett. 7, 1355–1363 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, X., Alsalloum, A. Y., Hou, Y., Sargent, E. H. & Bakr, O. M. All-perovskite tandem solar cells: a roadmap to uniting high efficiency with high stability. Acc. Mater. Res. 1, 63–76 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ma, C. et al. Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells. Science 379, 173–178 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, C., Grätzel, M. & Park, N. G. Facet engineering for stable, efficient perovskite solar cells. ACS Energy Lett. 7, 3120–3128 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ma, C. et al. Photovoltaically top-performing perovskite crystal facets. Joule 6, 2626–2643 (2022).

    Article 
    CAS 

    Google Scholar
     

  • He, R. et al. Wide-bandgap organic–inorganic hybrid and all-inorganic perovskite solar cells and their application in all-perovskite tandem solar cells. Energy Environ. Sci. 14, 5723–5759 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. & Zhang, W. Perovskite tandem solar cells: from fundamentals to commercial deployment. Chem. Rev. 120, 9835–9950 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nie, T., Fang, Z., Ren, X., Duan, Y. & Liu, S. Recent advances in wide-bandgap organic–inorganic halide perovskite solar cells and tandem application. Nanomicro Lett. 15, 70 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • An, Y. et al. Optimizing crystallization in wide-bandgap mixed halide perovskites for high‐efficiency solar cells. Adv. Mater. 36, 2306568 (2023).

    Article 

    Google Scholar
     

  • Xu, F., Zhang, M., Li, Z., Yang, X. & Zhu, R. Challenges and perspectives toward future wide-bandgap mixed-halide perovskite photovoltaics. Adv. Energy Mater. 13, 2203911 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Z. et al. A thermodynamically favored crystal orientation in mixed formamidinium/methylammonium perovskite for efficient solar cells. Adv. Mater. 31, 1900390 (2019).

    Article 

    Google Scholar
     

  • Zheng, G. et al. Manipulation of facet orientation in hybrid perovskite polycrystalline films by cation cascade. Nat. Commun. 9, 2793 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, Y. et al. Synergetic regulation of oriented crystallization and interfacial passivation enables 19.1% efficient wide-bandgap perovskite solar cells. Adv. Energy Mater. 12, 2201509 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xiang, W. et al. Intermediate phase engineering of halide perovskites for photovoltaics. Joule 6, 315–339 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, M., Gao, W., Cao, F. & Li, L. Ethylamine iodide additive enables solid-to-solid transformed highly oriented perovskite for excellent photodetectors. Adv. Mater. 34, 2108569 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, Y. et al. Downward homogenized crystallization for inverted wide-bandgap mixed-halide perovskite solar cells with 21% efficiency and suppressed photo-induced halide segregation. Adv. Funct. Mater. 32, 2200431 (2022).

    Article 
    CAS 

    Google Scholar
     

  • McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, J. et al. Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems. Science 367, 1097–1104 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaysankar, M. et al. Crystallisation dynamics in wide-bandgap perovskite films. J. Mater. Chem. A 4, 10524–10531 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Abdollahi Nejand, B. et al. Scalable two-terminal all-perovskite tandem solar modules with a 19.1% efficiency. Nat. Energy 7, 620–630 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wen, J. et al. Steric engineering enables efficient and photostable wide-bandgap perovskites for all-perovskite tandem solar cells. Adv. Mater. 34, 2110356 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bu, T. et al. Structure engineering of hierarchical layered perovskite interface for efficient and stable wide bandgap photovoltaics. Nano Energy 75, 104917 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, L. et al. Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7, 708–717 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chen, J. et al. Oriented halide perovskite nanostructures and thin films for optoelectronics. Chem. Rev. 121, 12112–12180 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, S. et al. Crystallization in one-step solution deposition of perovskite films: upward or downward? Sci. Adv. 7, eabb2412 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wen, J. et al. Heterojunction formed via 3D-to-2D perovskite conversion for photostable wide-bandgap perovskite solar cells. Nat. Commun. 14, 7118 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perini, C. A. R. et al. Interface reconstruction from Ruddlesden–Popper structures impacts stability in lead halide perovskite solar cells. Adv. Mater. 34, 2204726 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wei, M. et al. Combining efficiency and stability in mixed tin–lead perovskite solar cells by capping grains with an ultrathin 2D layer. Adv. Mater. 32, 1907058 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, N. et al. Mixed cation FAxPEA1–xPbI3 with enhanced phase and ambient stability toward high‐performance perovskite solar cells. Adv. Energy Mater. 7, 1601307 (2017).

    Article 

    Google Scholar
     

  • Luo, C. et al. Facet orientation tailoring via 2D-seed-induced growth enables highly efficient and stable perovskite solar cells. Joule 6, 240–257 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Z. et al. Reducing perovskite/C60 interface losses via sequential interface engineering for efficient perovskite/silicon tandem solar cell. Adv. Mater. 36, 2308370 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, K. et al. Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science 376, 762–767 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Green, M. A. et al. Solar cell efficiency tables (version 62). Prog. Photovolt.: Res. Appl. 31, 651–663 (2023).

    Article 

    Google Scholar
     

  • Yin, X. et al. Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts. ACS Nano 10, 3630–3636 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Translate »